In this paper we show that problems concerning the development of a boundary layer on a semi-infinite plate when the outer flow speed is of the form $U=(1+c t) b_{a}$, and on a cylinder when the outer flow speed has the forms $U=c t \alpha_{x}{ }^{m}$ and $U=(1+$ ct) ${ }^{\mathrm{b}} \alpha \mathrm{x}^{m}$, are self-similar. We present the results of numerical calculations for various values of α, b, and m. We consider the problem of a stepwise nonstationary heating of a plate, impulsively set into motion in an incompressible fluid; we show that this problem is self-similar and obtain its solution numerically.

Problem Concerning the Motion of a Semi-Infinite Plate with Speed $U=(1+c t) b_{a}$
In this case the system of differential equations for the nonstationary laminar boundary layer and the associated boundary conditions have the form

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=a c b(1+c t)^{b-t}+v \frac{\partial^{2} u}{\partial y^{2}} ; \\
u=U, v=0 \text { for } y=0, t=0 \tag{1}\\
u=0, v=0, y=0, t>0, x>0 \\
u=U, y=\infty, t>0, x>0
\end{gather*}
$$

As new independent variables and functions we take the following:

$$
\xi=\frac{x}{(1+c t)^{1+b}} ; \quad \eta=\frac{y}{(1+c t)^{1 / 2}} ; \quad u=\Phi(1+c t)^{b} ; \quad v=\frac{V}{(1+c t)^{1 / 2}} .
$$

With these substitutions the problem may be written in the form

$$
\begin{gathered}
\frac{\partial \Phi}{\partial \xi}+\frac{\partial V}{\partial \eta}=0 ; \\
b c \Phi-\frac{1}{2} c \eta \frac{\partial \Phi}{\partial \eta}-c(1+b) \xi \frac{\partial \Phi}{\partial \xi}+\Phi \frac{\partial \Phi}{\partial \xi}+V \frac{\partial \Phi}{\partial \eta}=a c b+v \frac{\partial^{2} \Phi}{\partial \eta^{2}} ; \\
\Phi(\eta, \xi)=0, V=0 \text { for } \eta=0 ; \\
\Phi(\eta, \xi)=1 \text { for } \eta=\infty .
\end{gathered}
$$

Problem Concerning Acceleration of a Cylinder ($U=\operatorname{ct} \alpha_{\mathrm{X}} \mathrm{m}$)
The system of boundary-layer equations (see [1]) has the form

$$
\begin{align*}
\frac{\partial u}{\partial t} \div u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}= & \alpha c x^{m} t^{\alpha-1}+c^{2} t^{2 x} m x^{2 m-1}+v \frac{\partial^{2} u}{\partial y^{2}} \tag{2}\\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 .
\end{align*}
$$

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 122-125, July-August, 1975. Original article submitted October 31, 1974.

[^0]

Fig. 1

Fig. 2

The boundary conditions here are analogous to the conditions in problem (1). We introduce the new variables

$$
\begin{aligned}
& \xi=x\left(\frac{\alpha+1}{t^{1-m}}\right)^{-1}, \quad \eta=\frac{y}{t^{1 / 2}} \\
& \Phi=u / c x^{m} t^{-\alpha}, \quad V=v / c x^{m-1} t^{-(\alpha+1 / 2)}
\end{aligned}
$$

In terms of these new variables Eqs. (2) become

$$
\begin{gathered}
\alpha \Phi+\frac{(\alpha+1)}{m-1} \xi \frac{\partial \Phi}{\partial \xi}-\frac{1}{2} \eta \frac{\partial \Phi}{\partial \eta}+\Phi\left[c m \xi^{m-1} \Phi+c \xi^{m} \frac{\partial \Phi}{\partial \xi}\right]+c \xi^{m-1} V \frac{\partial \Phi}{\partial \eta}=\alpha+c m_{\xi}^{\varepsilon_{5}^{m-1}}+v \frac{\partial^{2} \Phi}{\partial \eta^{2}} \\
m \Phi+\xi \frac{\partial \Phi}{\partial \xi}+\frac{\partial V}{\partial \eta}=0
\end{gathered}
$$

while the boundary conditions have the same form as in problem (1).
To solve this problem numerically we use the implicit numerical scheme (see [2])

$$
\begin{gathered}
\frac{\Phi_{i}^{j+1}-\Phi_{i}^{j}}{\Delta \xi}=\frac{1}{\left(\Phi_{i}^{j+1} c \xi_{i}^{m}+\frac{\alpha+1}{m-1} \xi_{i}\right)}\left[\frac{\Phi_{i+1}^{j+1}-2 \Phi_{i}^{j+1}+\Phi_{i-1}^{j+1}}{\Delta \eta^{2}}-\right. \\
\left.-\left(c \xi_{i}^{m-1} V_{i}^{j+1}-\frac{1}{2} \eta_{i}\right) \frac{\Phi_{i+1}^{j+1}-\Phi_{i}^{j+1}}{\Delta \eta}+c m \xi_{i}^{m-1}\left(1-\Phi_{i}^{j+1}\right)^{2}+\alpha\left(1-\Phi_{i}^{j+1}\right)\right] .
\end{gathered}
$$

In calculating the flow field in the direction of the longitudinal coordinate η we use the driver method at each i-th point ξ_{i}. Figures 1 and 2 show the tangential velocity component for the ξ, η coordinate values used in the computations with the c value taken equal to 500 (in these figures curves 1 and 2 correspond to ξ values of 0.5 and 11 , respectively). Figure 1 is for the case $\alpha=0.5$ and $m=0.5$; Fig. 2 is for $\alpha=0.5$ and $m=1.5$. The starred points are for $\alpha=1.5$ and $m=0.5$ in Fig. 1 ; in Fig. 2 they are for $\alpha=1.5$ and $m=1.5$. From the difference scheme used and from the graphs it is evident that the exponent α depends weakly on the dimensionless velocity profile, while m changes its form completely depending on the coordinates.

Problem Concerning the Motion of a Cylinder with the Speed $U=(1+c t) b_{\alpha x} m$
With the introduction of the variables

$$
\begin{gathered}
\xi=\frac{x}{(1+c i)^{\frac{1+b}{1-m}}} ; \quad \eta=\frac{y}{(1+c t)^{12}} ; \quad \Phi=\frac{u}{a x^{m}}(1+c t)^{-b} ; \\
V={\frac{\partial}{c x^{m-1}}(1+c t)^{-\left(\frac{1}{2}+b\right)}}^{\left(1+\frac{1}{2}\right.} .
\end{gathered}
$$

Fig. 3

Fig. 4

Fig. 5

Fig. 6
this problem may be written in the form

$$
\begin{gathered}
b c \Phi-\frac{1}{2} c \eta \frac{\partial \Phi}{\partial \eta}-\frac{1+b}{1-m} c \xi \frac{\partial \Phi}{\partial \xi}+\Phi\left[a \xi m \frac{\partial \Phi}{\partial \xi}+m a \xi^{n-1} \Phi\right]+ \\
+a \xi^{m-1} V \frac{\partial \Phi}{\partial \eta}=b c+a m \xi^{m-1}+v \frac{\partial^{2} \Phi}{\partial \eta^{2}} ; m \Phi+\xi \frac{\partial \Phi}{\partial \xi}+\frac{\partial V}{\partial \eta}=0 \\
\\
\Phi(\eta, \xi)=0, V=0 \text { for } \eta=0 \\
\\
\Phi(\eta, \xi)=1 \text { for } \eta=\infty .
\end{gathered}
$$

Since in the initial equations only the derivative with respect to t appears, we can state that if there is self-similarity for the functions $U=f(t) \varphi(x)$, there will also be selfsimilarity for the function $U=f(1+c t) \varphi(x)$.

The numerical scheme used to obtain a solution is similar to that of the previous problem. An analysis of the results confirms the weak influence of the acceleration law which applies here; it also confirms the strong dependence of the dimensionless velocity profile on the form of the body (m).

The equations describing the problem concerning stepwise nonstationary heating of a flat plate, set impulsively into motion, are (see [1])

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 ; \\
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}=v \frac{\partial^{2} u}{\partial u^{2}} ; \tag{3}\\
\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=\frac{v}{\sigma} \frac{\partial^{2} T}{\partial y^{2}},
\end{gather*}
$$

where σ is the Prandtl number, and

$$
u=v=0, T=T_{e} \text { for } t=0 ;
$$

$$
\begin{array}{ll}
u=v=0 & \text { for } t>0, y=0 \\
u=U_{\infty} & \text { for } t>0, x>0, y=\infty \\
T=T_{w} & \text { for } t>0, y=0, x>0 \\
T=T_{e} & \text { for } t>0, y=\infty
\end{array}
$$

After substituting the variables

$$
u=\Phi(\xi, \eta) ; \quad v=\frac{V}{t^{1 / 2}} ; \quad \xi=\frac{x}{t} ; \quad \eta=\frac{y}{t^{1 / 2}} ; \quad \theta=\frac{T-T_{w}}{T_{e}-T_{w v}}
$$

we can rewrite problem (3) in the form

$$
\begin{gathered}
\frac{\partial \Phi}{\partial \xi}+\frac{\partial V}{\partial \eta}=0 ; \\
-\xi \frac{\partial \Phi}{\partial \xi}-\frac{1}{2} \eta \frac{\partial \Phi}{\partial \eta}+\Phi \frac{\partial \Phi}{\partial \xi}+V \frac{\partial \Phi}{\partial \eta}=v \frac{\partial^{2} \Phi}{\partial \eta^{2}} ; \\
-\xi \frac{\partial \theta}{\partial \xi}-\frac{1}{2} \eta \frac{\partial \theta}{\partial \eta}+\Phi \frac{\partial \theta}{\partial \xi}+V \frac{\partial \theta}{\partial \eta}=\frac{v}{\sigma} \frac{\partial^{2} \theta}{\partial \eta^{2}} ; \\
\Phi=V=0, \quad \theta=0, \eta=0 ; \\
\Phi=U, \quad \theta=1, \eta=\infty
\end{gathered}
$$

The kinematic and temperature profiles for $U_{\infty}=500 \mathrm{~cm} / \mathrm{sec}$ are shown in Figs. 3 and 4 for $\sigma=0.7$ (solid curve) and $\sigma=0.4$ (dashed curve), respectively. Curves 1 and 2 correspond to ξ values of 0.25 and 17.75 , respectively.

We employed the same methods to analyze the thermal boundary layer in the presence of a longitudinal pressure drop (impulsive Falkner-Skan motion) for small Mach numbers. The calculated results are shown in Figs. 5 and 6 for $m=0.5$ and $\sigma=0.7$, where the curves 1 , 2 , and 3 correspond to ξ values of $0.25,17.75$, and 37 , respectively.

For the Falkner-Skan problem the thermal and kinematic profiles differ considerably from one another.

By using the self-similar variables we can carry out the calculations on a machine like the BESM-3M, a stationary solution being obtained after a computer time of some 20 to 30 min. One can also show, within the scope of the boundary-layer theory, that the problem concerning the impulsive motion of a plate in a compressible gas, as well as the problem concerning the formation of a boundary layer behind a transient shock wave on a thin semi-infinite plate, is self-similar.

LITERATURE CITED

1. L. G. Loitsyanskii, Laminar Boundary Layer [in Russian], Fizmatgiz, Moscow (1962) p. 255. 2. A. A. Samarskii, Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971), p. 41.

[^0]: © 1976 Plenum Publishing Corporation, 227 West 17 th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

